
Exploring the NFC Attack Surface

Charlie Miller
Managing Principal
Accuvant Labs
charlie.miller@accuvant.com

August 13, 2012

Charlie Miller: Exploring the NFC Attack Surface

mailto:charlie.miller@accuvant.com
mailto:charlie.miller@accuvant.com

Introduction! 4

NFC protocols ! 5

Physical and RF layer! 6

Initialization, Anti-Collision, and Protocol Activation layer! 7

Protocol layer! 7

Application layer! 8

Example data capture! 10

Fuzzing the NFC stack! 13

Fuzzing setup! 15

Fuzzing test cases! 16

Results - Nexus S! 18

Results - Nokia N9! 25

NFC higher level code! 26

Nexus S - Android 2.3.3! 26

Galaxy Nexus - Android 4.0.1! 28

Galaxy Nexus - Android 4.1.1! 32

Nokia N9 - MeeGo 1.2 Harmattan PR1.3! 33

Possible attacks ! 37

Android NFC Stack bug! 37

Android Browser! 38

N9 Bluetooth pairing! 38

N9 bugs! 39

Summary ! 41

Acknowledgements ! 42

Charlie Miller: Exploring the NFC Attack Surface

References ! 43

Charlie Miller: Exploring the NFC Attack Surface

Introduction
Near Field Communication (NFC) has been used in mobile devices in some countries
for a while, and is now emerging on mobile devices in use in the United States. This
technology allows NFC-enabled devices to communicate with each other within close
range, typically a few centimeters. NFC is being deployed and adopted as a way to
make payments, using a mobile device to communicate credit card information to an
NFC enabled terminal. It is a new, cool, technology, but as with the introduction of any
new technology, the question that must be asked is what kind of impact the inclusion of
this new functionality will have on the attack surface of mobile devices.

In this paper we explore this question by introducing NFC and its associated protocols.
Next, we describe how to fuzz the NFC protocol stack for two devices as well as provide
the results of our testing. Then we see for these devices what software is built on top of
the NFC stack. It turns out that through NFC, using technologies like Android Beam or
NDEF content sharing, one can force some phones to parse images, videos, contacts,
office documents, and even open up web pages in the browser, all without user
interaction.

In some cases, it is even possible to completely take control of the phone via NFC,
including stealing photos, contacts, even sending text messages and making phone
calls. The next time you present your phone to pay for your cab, be aware you might
have just gotten owned.

Charlie Miller: Exploring the NFC Attack Surface

NFC protocols
Understanding the NFC attack surface first requires some understanding of NFC and
the underlying protocols on which it is based. Figure 1, below, shows a diagram of most
of the associated protocols used for NFC transactions.

Figure 1: Relevant specifications for NFC

At its most basic level, NFC is a set of communication protocols based on radio-
frequency identification (RFID) standards, including ISO 14443. NFC uses the
frequency 13.56 MHz and its operating range is said to be between 3-10 centimeters,
although in practice it is typically near the lower end of that range. We’ve observed the
range of 2-3 centimeters in real world scenarios. NFC operates at low data rates,
ranging from 106kbit/s to 424kbits/s.

There are two general ways NFC communication takes place: in the first, there is an
initiator and a target. The initiator, for example a mobile device, actively generates a
radio frequency (RF) field that can power the passive target, such as an NFC tag. The
target tag answers by modulating the existing field provided by the initiator. This
enables the tag to be constructed very simply, without a need for power or batteries. In

Charlie Miller: Exploring the NFC Attack Surface

http://www.openpcd.org/ISO14443
http://www.openpcd.org/ISO14443

this situation the initiator can read or sometimes write data to and from the tag. There
are many types of tags and many protocols that can be used to interact with different
types of tags, again, please see Figure 1.

The other mode of NFC communication is peer-to-peer (P2P). In order to do P2P, both
devices need to be powered and generate their own RF fields.

Physical and RF layer
At the lowest level, communication takes place according to ISO 14443 A-2. There are
different codings to transfer data. At 106 kbits/s, a modified Miller coding with 100%
modulation is used. In other cases, Manchester coding is used with a modulation ratio
of 10%. Figure 2 shows an FFT plot of captured NFC traffic using GNU Radio.

Figure 2: NFC traffic captured at 195k samples/second, decimated by 4, with low pass
filter at 10k

Charlie Miller: Exploring the NFC Attack Surface

The next Figure shows the waveform of some low-level data.

Figure 3: A waveform of the value “26”

From looking at the signal in Figure 3, above, which was taken between a Nexus S
Android device and an NFC tag, one can deduce that the Nexus S transmits data at a
rate of 106kbps using 100% ASK with Manchester encoding. With some effort, you can
find the signal in Figure 3 corresponds to the byte “0x26” which is a SENS_REQ
according to ISO 14443-3.

This layer is really too low for our purposes, for more information on this protocol layer,
consult [1-3].

Initialization, Anti-Collision, and Protocol Activation layer
For some types of NFC communication, there is a phase whereas two NFC enabled
devices become aware of each other and initialize their communications. There is very
little data exchanged here, and for reasons discussed in the next section, we cannot
easily fuzz this part of the protocol, so we skip any further details. For more information,
please see [4].

Protocol layer
Lower levels are focused on physical aspects and starting communication. The protocol
layer is the layer for actually transmitting the data intended to be sent or received with
the communication. In general, the data can be anything, but a typical data payload will
be described in the next section.

There are a variety of protocol layer protocols supported in most NFC devices. We’ll
briefly describe each of them.

Charlie Miller: Exploring the NFC Attack Surface

http://en.wikipedia.org/wiki/Amplitude-shift_keying
http://en.wikipedia.org/wiki/Amplitude-shift_keying
http://en.wikipedia.org/wiki/Manchester_code
http://en.wikipedia.org/wiki/Manchester_code

Type 1 (Topaz)
Type 1 tags use a format sometimes called the Topaz protocol, see [5]. It uses a simple
memory model which is either static for tags with memory size less than 120 bytes or
dynamic for tags with larger memory. Bytes are read/written to the tag using commands
such as RALL, READ, WRITE-E, WRITE-NE, RSEG, READ8, WRITE-E8, WRITE-N8.

MIFARE Classic
MIFARE classic tags are storage devices with simple security mechanisms for access
control. They use an NXP proprietary security protocol for authentication and ciphering.
This encryption was reverse engineered and broken in 2007 [6].

Type 2 (MIFARE UltraLight)
Type 2 tags [7] are similar to Type 1 tags. They have a static memory layout when they
have less than 64 bytes available and a dynamic layout otherwise. The first 16 bytes of
memory contain metadata like a serial number, access rights, and capability container.
The rest is for the actual data. Data is accessed using READ and WRITE commands,
see the section “Example data capture” for an example of a Type 2 transaction.

Type 3
As far as I can tell, there aren’t any tags that use Type 3 transactions, but if you care,
check out [8].

Type 4 (DESFire)
Type 4 tags contain a simple file system composed of at least 2 files, the Capability
Container (CC) file and the NDEF file. The commands include Select, ReadBinary, and
UpdateBinary. At the most basic level, the device must read the CC file, which tells it
information about the NDEF file which it can then select and read. The CC file is
typically 15 bytes in size. See [9] for more details.

LLCP (P2P)
The previous protocol layer protocols have all had initiators and targets and the
protocols are designed around the initiator being able to read/write to the target. Logical
Link Control Protocol (LLCP) is different because it establishes communication between
two peer devices. LLCP allow connections to be established and deactivated, data to
be transferred at any time when the link is established, do multiplexing, and provide
connectionless or connection-oriented transport. Each PDU contains a source and
destination address, a type, a sequence field and the LLCP payload. The different
types include things like SYMM to keep connections alive when there are no other
PDU’s available, CONNECT to establish a connection-oriented connection, and I for the
actual high level data payload. There are other types of PDU’s as well, see [10] for
details.

Application layer
While NFC can transport arbitrarily formatted data, typically it transports data in the NFC
Data Exchange Format (NDEF). It is a simple binary message format that can be used

Charlie Miller: Exploring the NFC Attack Surface

to encapsulate one or more application-defined payloads of arbitrary type and size into
a single payload. NDEF data contains different type identifiers to describe the type of
data to expect, such as URI’s, MIME types, or NFC-specific types. There are
specifications for NDEF [11] as well as for each of the well known types, see [12-13] for
example. One example NDEF is given in the next section. For clarity, and because the
NDEF format is so important for NFC, we provide another couple of examples here. We
start with a “smart poster” which is basically a URL.

0000: D1 02 18 53 70 91 01 05 54 02 65 6E 68 69 51 01 Ñ..Sp<91>..T.enhiQ.
0010: 0B 55 01 67 6F 6F 67 6C 65 2E 63 6F 6D .U.google.com

d1 - MB, ME, SR, TNF=”NFC Forum well-known type”
! 02 Type length
! 18 Payload length
! 53 70 Type - “Sp”
! ! 91 - MB, SR
! ! ! 01 Type length
 05 Payload length
 54 Type - “T”
 02 Status byte - Length of IANA lang code
 65 6E language code = “en”
 68 69 “hi” text
 51 - ME, SR
 01 Type length
 0b Payload length
! ! ! 55 Type - “U”
 01 identifier code “http://www.”
 67 6F 6F 67 6C 65 2E 63 6F 6D = “google.com” - text

The previous NDEF example had a single byte devoted to the length of the payload. To
support payloads longer than 255 bytes, a longer form of NDEF is used. (You can tell
which variant to expect by whether the SR bit is set in the first byte of the NDEF record
or not). Below is the beginning of a longer NDEF record.

0000: C1 01 00 00 01 2F 54 02 65 6E 61 61 61 61 61 61....

c1 - MB, ME, TNF=”NFC Forum well-known type”
! 01 Type length
! 00 00 01 2f Payload length
! 54 Type - “T”
! ! 02 - Status byte - Length of IANA lang code
! ! 65 63 - language code = “en”
! ! 61 61 61 61 61 61= “aaaaa...” - text

Charlie Miller: Exploring the NFC Attack Surface

http://www
http://www

Example data capture
Data can be captured in various ways. Perhaps the simplest way (when it works) is to
use a Proxmark3 device [14], see Figure 4, below.

Figure 4: Proxmark homemade antenna waiting for a Type 2 transaction from a
SCL3711

Below, you can see a trace obtained from an SCL 3711 NFC card reader reading from a
Mifare Ultralight tag. I added brackets to indicates bytes used for checksum purposes.
I also indicate the specification used to interpret the bytes.

<Broken out from [15]>
SENS_REQ
 26

SENS_RES (NFCID1 size: double (7 bytes), Bit frame SDD)
TAG 44 00

SDD_REQ CL1
 93 20

SDD_RES (CT? 04-e3-ef BCC)
TAG 88 04 e3 ef <80>

Charlie Miller: Exploring the NFC Attack Surface

SEL_REQ CL1
93 70 88 04 e3 ef 80 <99 73>

SEL_RES - Not complete, type 2
TAG 04 <da 17>

SDD_REQ CL2
 95 20

SDD_RES (a2-ef-20-80 BCC)
TAG a2 ef 20 80 <ed>

SEL_REQ CL2
 95 70 a2 ef 20 80 ed <72 c8>

SEL_RES - complete, type 2
TAG 00 <fe 51>

<Broken out from [7]>
READ - 08
 30 08 <4a 24>

READ Response
TAG 74 72 61 6c 69 67 68 74 3f fe 00 00 e4 f2 e3 01 <06 d5>

READ - 03
 30 03 <99 9a>

READ Response
TAG e1 10 06 00 03 17 d1 01 13 54 02 65 6e 73 75 70 <b1 62>

READ - 04
 30 04 <26 ee>

READ Response
TAG 03 17 d1 01 13 54 02 65 6e 73 75 70 2c 20 75 6c <2a 00>

READ - 05
 30 05 <af ff>

READ - Response
TAG 13 54 02 65 6e 73 75 70 2c 20 75 6c 74 72 61 6c <16 f6>

READ - 06
 30 06 <34 cd>

READ - Response
TAG 6e 73 75 70 2c 20 75 6c 74 72 61 6c 69 67 68 74 <65 db>

READ - 04
 30 04 <26 ee>

READ - Response
TAG 03 17 d1 01 13 54 02 65 6e 73 75 70 2c 20 75 6c <2a 00>

READ - 05
 30 05 <af ff>

READ - Response
TAG 13 54 02 65 6e 73 75 70 2c 20 75 6c 74 72 61 6c <16 f6>

READ - 06
 30 06 <34 cd>

READ - Response
TAG 6e 73 75 70 2c 20 75 6c 74 72 61 6c 69 67 68 74 <65 db>

READ - 07
 30 07 <bd dc>

READ - Response
TAG 2c 20 75 6c 74 72 61 6c 69 67 68 74 3f fe 00 00 <8b 9e>

READ - 08

Charlie Miller: Exploring the NFC Attack Surface

 30 08 <4a 24>

READ - Response
TAG 74 72 61 6c 69 67 68 74 3f fe 00 00 e4 f2 e3 01 <06 d5>

READ - 09
 30 09 <c3 35>

READ - Response
TAG 69 67 68 74 3f fe 00 00 e4 f2 e3 01 e4 f2 e3 01 <15 ca>

READ - 0a
 30 0a <58 07>

READ - Response
TAG 3f fe 00 00 e4 f2 e3 01 e4 f2 e3 01 30 00 00 00 <6a 52>

READ - 0b
 30 0b <d1 16>

READ - Response
TAG e4 f2 e3 01 e4 f2 e3 01 30 00 00 00 45 34 20 46 <ef 07>

READ - 0c
 30 0c <6e 62>

READ - Respnose
TAG e4 f2 e3 01 30 00 00 00 45 34 20 46 32 20 45 33 <17 e2>

READ - 0d
 30 0d <e7 73>

READ - Response
TAG 30 00 00 00 45 34 20 46 32 20 45 33 04 e3 ef 80 <f1 77>

READ - 0e
 30 0e <7c 41>

READ - Response
TAG 45 34 20 46 32 20 45 33 04 e3 ef 80 a2 ef 20 80 <01 7e>

READ - 0f
 30 0f <f5 50>

READ - Response
TAG 32 20 45 33 04 e3 ef 80 a2 ef 20 80 ed 48 00 00 <1a 18>

SLP_REQ
50 00 <57 cd>

Pulling out the NDEF data read we find:

03 17 d1 01 13 54 02 65 6e 73 75 70 2c 20 75 6c 74 72 61 6c 69 67
68 74 3f fe 00 00 e4 f2 e3 01 30 00 00 00 45 34 20 46 32 20 45 33
04 e3 ef 80 a2 ef 20 80 ed 48 00 00

Examining this NDEF data we can see the contents:

Charlie Miller: Exploring the NFC Attack Surface

<Breaking out from [11]>
03 NDEF Message
17 length
! Record 1
! ! d1 - MB, ME, SR, TNF=”NFC Forum well-known type”
! ! 01 Type length
! ! 13 Payload length
<From [12]>
! ! ! 54 Type - “T”
<From [13]>
! ! ! ! 02 - Status byte - Length of IANA lang code
! ! ! ! 65 6e - language code = “en”
! ! ! ! 73 75 70 2c 20 75 6c 74 72 61 6c 69 67 68 74

3f = “sup, ultralight?” - text
! Record 2
! ! fe Terminator NDEF

Fuzzing the NFC stack
When considering the attack surface that the introduction of NFC to a device adds, the
most obvious place to start is the NFC software stack itself, the code responsible for
parsing the NFC protocols mentioned in the last section. Typically, this code will consist
of a driver for the NFC chip, a library used to communicate with the driver, and then the
OS code to deal with incoming NFC payloads including dealing with different types of
NDEF messages that might arrive. In Android, we see something like Figure 5, below.

Figure 5: NFC handling code in Android.

Charlie Miller: Exploring the NFC Attack Surface

In MeeGo it is similar, as in Figure 6, below.

Figure 6: NFC handling code in MeeGo

In such a complex stack, there certainly could be bugs lurking in any of this code that
could allow remote compromise of NFC enabled devices. Please note that in Android,
some of the components are Java apps and so memory corruption is not a possibility,
but this will vary from platform to platform. There will always be some native code
involved at the lowest levels, though.

There are various approaches to trying to find vulnerabilities in the NFC stack. A driver
that is proprietary could still be reverse engineered and analyzed. The library for the
chip on Android, libnfc.so, is open source, and so could be audited. However, one very
effective way to get started is to set up a fuzzing environment and fuzz the NFC protocol
stack.

Depending on exactly how this is to be carried out, different levels of the protocol stack
can be attacked. We considered various approaches such as doing it at the RF level
(see [2-3]) or library injection (as was done for SMS in [16]). After many trials and
errors, we settled on using card emulation with a collection of off-the-shelf NFC
hardware.

Charlie Miller: Exploring the NFC Attack Surface

For the tag types which had working card emulation functionality, we could fuzz the
protocol level and application level. We could potentially fuzz the Initialization, Anti-
Collision, and Protocol Activation layer but there isn’t much data there so it was
determined not to be a good use of time. We could not fuzz the RF layer without a fully
working software defined radio (SDR) NFC stack. Figure 7, below, shows which
protocols could be tested with this approach.

Figure 7: Fuzzing using this setup can fuzz any of the areas indicated above

Fuzzing setup
If you want to simulate various NFC tags, you need to do what is called card emulation.
This is where an NFC device acts like a passive tag. We were able to find a couple of
pieces of hardware that could perform card emulation in some circumstances. Namely,
an SCL 3711 Contactless Mobile Reader could be used with libnfc to do card emulation
of a Type 2 Mifare UltraLight tag. An ACS ACR122U can do card emulation using libnfc
of a Type 4 Mifare DESFire. Additionally, an SCL3711 can do LLCP transactions using
nfcpy. Unfortunately, there is no support for other types of tags using libnfc or nfcpy. It
would be interesting to add other tag types into libnfc for testing.

Charlie Miller: Exploring the NFC Attack Surface

Sometimes the hardware devices would hang and need to be restarted. This cannot be
accomplished in software and has to be done in hardware. In order to simulate
unplugging and replugging the USB card reader into the computer, we use a USB hub
that implements port power control. In particular, we used a DLink DUB-H7 7-Port USB
Hub. Therefore, the hardware set-up looks something like that in Figure 8, below.

Figure 8: Fuzzing hardware setup

The final step in fuzzing is to simulate someone placing the device onto the emulated
tag. In some cases, you cannot just emulate the tag with a device already in the RF
field of an NFC initiator. In order to simulate a device entering the field, a couple of
options are available. The first is to kill the NFC process and restart it when the tag is
being emulated. A slightly nicer way is to issue the SIGSTOP and SIGCONT signals,
respectively, to simulate removing/placing the Nexus S NFC reader. A final way was to
enable and disable the NFC service,in the same way the Settings application does it in
Android.

Fuzzing test cases
In general, there are two ways to generate fuzzing test cases, generation based and
mutation based. For generation based, we create test cases from “scratch”, using the
specification as a guide. For mutation based fuzzing, we take existing valid data and
inject faults into it. One of the interesting things about fuzzing is that it turns out using

Charlie Miller: Exploring the NFC Attack Surface

multiple fuzzers is often superior to using a single fuzzer. Therefore, we use an
approach to try to use both mutation and generation based fuzzers as well as
incorporate a couple of different types of mutations to add to the valid data.

Protocol layer fuzzing
On the protocol level, we used only a mutation-based approach since the fields being
fuzzed were so simple. We are constrained by the hardware and software which can do
device emulation. We only have the ability to emulate Type 2 and Type 4 tags as well
as perform basic LLCP connections. For these three types, we can fuzz at a low level,
just after the anti-collision. For other types of cards or transactions, we cannot fuzz at a
low level. In particular we cannot fuzz Type 1 (Topaz) or Type 3 (FeliCa) protocols at
this time.

For this low level fuzzing for tags, we used the nfc-emulate-forum-tag2 and nfc-emulate-
forum-tag4 programs which come with libnfc, modified to present different data before a
valid NDEF was presented. For fuzzing low level Type 2 tags, we fuzz the non-NDEF
bytes in the MiFare Ultralight’s memory. Namely, this includes the first 16 bytes of the
static memory structure (see section 2.1 in [7]).

For type 4 tags, we fuzz the Capability Container file, see section 5.1 of [9].

For LLCP, we use modified versions of the nfcpy software suite. In particular, we fuzz
the CONNECT packet and the I (Information) packet (see 4.3.10 in [10]) of the
connection. For Android we used the nfcpy script npp-test-client and for for the Nokia
N9, we used the snep-test-client. NPP is the NDEF Push Protocol which is used by
Android [17]. SNEP is the Simple NDEF Exchange Protocol used by Nokia and other
devices [18].

Application layer fuzzing
Application layer fuzzing involves creating fuzzed NDEF messages and getting them to
the device using one of the available low level protocols. As in the low level protocols,
we start with a mutation-based approach. We took many different types of NDEF
messages and added mutations to them.

Additionally, we utilized a generation-based approach to create more specialized NDEF
fuzzing test cases.

For this, we utilize the Sulley Fuzzing Framework. We created 11 different test case
generation scripts (ndef_*.py) based on a modified version of Sulley. Each will generate
many thousands of NDEF test cases to STDOUT. For example,

$./ndef_short_uri.py | grep -v "^\["
D1010B550036333633393934373931
D1010B550136333633393934373931
D1010B550236333633393934373931
D1010B550336333633393934373931

Charlie Miller: Exploring the NFC Attack Surface

D1010B550436333633393934373931
D1010B550536333633393934373931
D1010B550636333633393934373931
D1010B550736333633393934373931
D1010B550836333633393934373931
D1010B550936333633393934373931
...

In the above output, the fifth byte is being mutated.

$./ndef_short_uri.py | grep "total cases"
[10:08.08] fuzzed 0 of 1419 total cases

Sulley is designed to do everything from test case generation to sending and monitoring
during fuzzing. Since we tend to fuzz esoteric devices, it is not well suited for this, and
so my modifications to Sulley are mostly to allow it to print out test cases in a way which
are easily read by another program which will be responsible for sending the test cases
and monitoring the test device.

Results - Nexus S
We fuzzed the NFC stack on a Nexus S phone running Android 2.3.3 with the above
approaches. This was the most current version when we started fuzzing and I believe is
the most up to date version for an AT&T Nexus S using default methods of upgrade.

Protocol Layer
A total of 12,000 test cases were developed and tested against the low level NFC
protocols, see below for details.

Device Type Test
cases

Results/notes

Nexus S Type 2 (UL) 4000 18 bytes of MiFare UL memory

MiFare 1k/4k Cannot emulate at this time

Type 4 (DESFire) 4000 15 bytes of Capacity Container

ISO 14443 A-4 (PDU) Nothing interesting to fuzz

Type 1 (Topaz) Cannot emulate at this time

Type 3 (FelCa) Cannot emulate at this time

LLCP - Connect 2000 19 bytes of information, some crashes

Charlie Miller: Exploring the NFC Attack Surface

Device Type Test
cases

Results/notes

LLCP - I 2000 13 bytes of header information, some
crashes

Application Layer
A total of 52362 test cases were performed against the Nexus S. See below for details.

Device Type Test
cases

Results/notes

Nexus S NDEF - bitflip 9000 Mutation-based

NDEF - short text 1626 Generation-based

NDEF - short URI 538 Generation-based

NDEF - short SMS 1265 Generation-based

NDEF - short SP 3675 Generation-based

NDEF - short BT 1246 Generation-based

NDEF - long text 2440 Generation-based

NDEF - long vcard 32572 Generation-based

Android - Crashes
The most common crash found was of the Tags application, which is the default Android
NFC tag reader application. This application is written in Java and so crashes
correspond to Java exceptions and not, for example, memory corruption. See Figure 9,
below, for an example of what a crash looks like on the phone.

Charlie Miller: Exploring the NFC Attack Surface

Figure 9: Tags application dying

The log reveals
E/NfcService(17875): failed to parse record
E/NfcService(17875): java.lang.ArrayIndexOutOfBoundsException
E/NfcService(17875): at com.android.nfc.NfcService
$NfcServiceHandler.parseWellKnownUriRecord(NfcService.java:2570)
E/NfcService(17875): at com.android.nfc.NfcService
$NfcServiceHandler.setTypeOrDataFromNdef(NfcService.java:2616)
E/NfcService(17875): at com.android.nfc.NfcService
$NfcServiceHandler.dispatchTagInternal(NfcService.java:2713)

During low level fuzzing, a different (Java) application, the NFC Service, was also seen
to crash, shown in Figure 10, below. The NFC Service is the default Android NFC
processing service. .

Charlie Miller: Exploring the NFC Attack Surface

Figure 10: The NFC service is prone to Java exceptions

The log corresponds to something like the series of exceptions below:

D/NdefPushServer(3130): java.io.IOException
D/NdefPushServer(3130): at
com.android.internal.nfc.LlcpSocket.receive(LlcpSocket.java:193)
D/NdefPushServer(3130): at
com.android.nfc.ndefpush.NdefPushServer
$ConnectionThread.run(NdefPushServer.java:70)
D/NdefPushServer(3130): about to close
W/dalvikvm(3130): threadid=8: thread exiting with uncaught
exception (group=0x40015560)
E/AndroidRuntime(3130): FATAL EXCEPTION: NdefPushServer
E/AndroidRuntime(3130): java.lang.NegativeArraySizeException
E/AndroidRuntime(3130): at
com.android.nfc.ndefpush.NdefPushProtocol.<init>(NdefPushProtoco
l.java:97)
E/AndroidRuntime(3130): at
com.android.nfc.ndefpush.NdefPushServer
$ConnectionThread.run(NdefPushServer.java:86)

Charlie Miller: Exploring the NFC Attack Surface

Java exceptions are generally pretty boring from a security perspective. However, we
did find a few native code crashes in the handling of LLCP packets. One appears to be
a null pointer dereference caused by sending a CC (Connection Complete) packet
before a CONNECT packet. Other crashes may be more interesting and occur in libc.

One frequent crash address found corresponds to a call to abort() in libc. Normally, this
isn’t very interesting because programs may call abort when they see something has
gone wrong, which in fuzzing, is all the time! However, there is a chance it is significant
because the exception may indicate memory corruption.

One crash log from an interesting Java exception is:

D/NdefPushServer(13178): starting new server thread
D/NdefPushServer(13178): about create LLCP service socket
D/NdefPushServer(13178): created LLCP service socket
D/NdefPushServer(13178): about to accept
D/NFC JNI (13178): Discovered P2P Target
D/NfcService(13178): LLCP Activation message
E/NFC JNI (13178): phLibNfc_Llcp_CheckLlcp() returned
0x00ff[NFCSTATUS_FAILED]
I/DEBUG (73): *** *** *** *** *** *** *** *** *** *** *** *** *** ***
*** ***
I/DEBUG (73): Build fingerprint: 'google/sojua/crespo:2.3.3/
GRI54/105536:user/release-keys'
I/DEBUG (73): pid: 13178, tid: 13178 >>> com.android.nfc <<<
I/DEBUG (73): signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr
0000000c
I/DEBUG (73): r0 afd46494 r1 00000004 r2 00000000 r3 afd46450
I/DEBUG (73): r4 00295530 r5 afd46450 r6 00000000 r7 40002410
I/DEBUG (73): r8 00000001 r9 0000008a 10 00000002 fp bed9725c
I/DEBUG (73): ip afd46474 sp bed97220 lr afd10e60 pc afd13d06 cpsr
00000030
I/DEBUG (73): d0 bed9734806293705 d1 0000000080542286
I/DEBUG (73): d2 000000060000008a d3 0000001500000075
I/DEBUG (73): d4 8040a46f0000001d d5 8040a48f00000013
I/DEBUG (73): d6 8040a4b600000014 d7 8040a4cc00000015
I/DEBUG (73): d8 0000000000000000 d9 0000000000000000
I/DEBUG (73): d10 0000000000000000 d11 0000000000000000
I/DEBUG (73): d12 0000000000000000 d13 0000000000000000
I/DEBUG (73): d14 0000000000000000 d15 0000000000000000
I/DEBUG (73): d16 0000000740af0af0 d17 3fe999999999999a
I/DEBUG (73): d18 42eccefa43de3400 d19 3fbc71c71c71c71c
I/DEBUG (73): d20 4008000000000000 d21 3fd99a27ad32ddf5
I/DEBUG (73): d22 3fd24998d6307188 d23 3fcc7288e957b53b
I/DEBUG (73): d24 3fc74721cad6b0ed d25 3fc39a09d078c69f
I/DEBUG (73): d26 0000000000000000 d27 0000000000000000
I/DEBUG (73): d28 0000000000000000 d29 0000000000000000
I/DEBUG (73): d30 0000000000000000 d31 0000000000000000
I/DEBUG (73): scr 60000012
I/DEBUG (73):
I/DEBUG (73): #00 pc 00013d06 /system/lib/libc.so
I/DEBUG (73): #01 pc 000144be /system/lib/libc.so
I/DEBUG (73): #02 pc 0004375c /system/lib/libnfc.so
I/DEBUG (73): #03 pc 00042b84 /system/lib/libnfc.so

Charlie Miller: Exploring the NFC Attack Surface

I/DEBUG (73): #04 pc 000433f4 /system/lib/libnfc.so

With some investigation you can see that the source code, found in
com_android_nfc_NativeNfcManager.cpp, reveals a classic double-free.

2047 /* Llcp methods */
2048
2049
static jboolean com_android_nfc_NfcManager_doCheckLlcp(JNIEnv *e, jobject o)
2050 {
2051 NFCSTATUS ret;
2052 jboolean result = JNI_FALSE;
2053 struct nfc_jni_native_data *nat;
2054 struct nfc_jni_callback_data *cb_data;
2055
2056
2057 CONCURRENCY_LOCK();
2058
2059 /* Memory allocation for cb_data */
2060
cb_data = (struct nfc_jni_callback_data*) malloc (sizeof(nfc_jni_callback_dat
a));
...
2081 if(ret != NFCSTATUS_PENDING && ret != NFCSTATUS_SUCCESS)
2082 {
2083 LOGE("phLibNfc_Llcp_CheckLlcp() returned 0x
%04x[%s]", ret, nfc_jni_get_status_name(ret));
2084 free(cb_data);
2085 goto clean_and_return;
2086 }
...
2101 clean_and_return:
2102 nfc_cb_data_deinit(cb_data);
2103 CONCURRENCY_UNLOCK();
2104 return result;
2105 }

The problem is that nfc_cb_data_deinit also calls free() on the buffer cb_data. This
vulnerability was fixed in ICS (4.0.1) by Google without my help. You can see by the
logging statement bolded in the crash log, this crash really is from this double free.

The fix can be seen in the git here:

http://218.211.38.204/?p=android/platform/packages/apps/
Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca565
0a170af5020c10a8ccb25f86f1007f

Even though the issue was fixed in ICS, it can still be problematic. For example, all
Gingerbread devices with NFC would still have this vulnerability. In fact, over 92% of
Android devices still run Gingerbread [19].

Charlie Miller: Exploring the NFC Attack Surface

http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f
http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f
http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f
http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f
http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f
http://218.211.38.204/?p=android/platform/packages/apps/Nfc.git;a=commitdiff;h=0ce29d75b2e19075f9f287a6bdfd92a7c7e91c13;hp=4467dca5650a170af5020c10a8ccb25f86f1007f

Some other crashes were found during our testing as well which seem likely to be
memory corruption vulnerabilities. Due to the fact that logging messages are different
than those seen in the last crash we know they are different than the last crash but we
could not reliably reproduce them enough to actually find the root cause of these bugs.
Some of the backtraces are given below where we’ve added function names in braces
to illustrate more clearly the nature of the crashes.

The first one is a call to abort() from dlmalloc. It is typical to call abort from dlmalloc if
the heap is corrupted in some manner.

I/DEBUG (73): #00 pc 00015ca4 /system/lib/libc.so <libc_android_abort>
I/DEBUG (73): #01 pc 00013e08 /system/lib/libc.so <dlmalloc>
I/DEBUG (73): #02 pc 0001423e /system/lib/libc.so <???>
I/DEBUG (73): #03 pc 000142ac /system/lib/libc.so <dlrealloc>
I/DEBUG (73): #04 pc 0001451a /system/lib/libc.so <realloc>
I/DEBUG (73): #05 pc 0001abf0 /system/lib/libbinder.so
<android::Parcel::continueWrite>
I/DEBUG (73): #06 pc 0001ad0c /system/lib/libbinder.so
<android::Parcel::growData>
I/DEBUG (73): #07 pc 0001ae68 /system/lib/libbinder.so
<android::Parcel::writeInplace>
DEBUG (73): #08 pc 0001aea8 /system/lib/libbinder.so
<android::Parcel::writeString16>
DEBUG (73): #09 pc 0001aed4 /system/lib/libbinder.so
<android::Parcel::writeString16>
DEBUG (73): #10 pc 0001aef8 /system/lib/libbinder.so
<android::Parcel::writeInterfaceToken>
...

Another crash seen was from a call to abort from dlfree(). This usually occurs due to
heap corruption.

D/NFC JNI (27180): phLibNfc_Mgt_UnConfigureDriver() returned
0x0000[NFCSTATUS_SUCCESS]^M^M
I/DEBUG (73): #00 pc 00015ca4 /system/lib/libc.so <libc_android_abort>
I/DEBUG (73): #01 pc 00013614 /system/lib/libc.so <dlfree>
I/DEBUG (73): #02 pc 000144da /system/lib/libc.so <free>
I/DEBUG (73): #03 pc 0004996e /system/lib/libdvm.so <dvmDestroyJNI>
I/DEBUG (73): #04 pc 00053fda /system/lib/libdvm.so
<dvmDetachCurrentThread>
I/DEBUG (73): #05 pc 000494da /system/lib/libdvm.so <???>
I/DEBUG (73): #06 pc 00005310 /system/lib/libnfc_jni.so
<nfc_jni_client_thread>
I/DEBUG (73): #07 pc 000118e4 /system/lib/libc.so
<_thread_entry>

An almost identical backtrace was observed except instead of abort being called, it
actually crashed in dlfree:

D/NFC JNI (27180): phLibNfc_Mgt_UnConfigureDriver() returned
0x0000[NFCSTATUS_SUCCESS]^M^M
I/DEBUG (73): #00 pc 00013256 /system/lib/libc.so <dlfree>
I/DEBUG (73): #01 pc 000144da /system/lib/libc.so <free>
I/DEBUG (73): #02 pc 0004996e /system/lib/libdvm.so <dvmDestroyJNI>

Charlie Miller: Exploring the NFC Attack Surface

This crash occurs in unlink_large_chunk inside dlfree() when dereferencing p->bk.

A final call to abort from dlmalloc was seen during initialization,
I/DEBUG (73): #00 pc 00015ca4 /system/lib/libc.so <libc_android_abort>
I/DEBUG (73): #01 pc 00013e08 /system/lib/libc.so <dlmalloc>
I/DEBUG (73): #02 pc 000144be /system/lib/libc.so <calloc>
I/DEBUG (73): #03 pc 000509c8 /system/lib/libdvm.so
<dvmInitReferenceTable>
I/DEBUG (73): #04 pc 000533f8 /system/lib/libdvm.so <???>
I/DEBUG (73): #05 pc 00053454 /system/lib/libdvm.so
<dvmAttachCurrentThread>

Since these crashes are not reliably reproducible, it is hard to say if they are all
separate or a single bug, or even if they are fixed or not, without further testing and
analysis.

Results - Nokia N9
We also fuzzed the NFC stack on a Nokia N9 running MeeGo 1.2 Harmattan PR1.2 with
the same approaches described above.

Protocol Layer
A total of 12,000 test cases were developed and tested against the low level NFC
protocols, as described below.

Device Type Test
cases

Results/notes

Nokia N9 Type 2 (UL) 4000 18 bytes of MiFare UL memory

MiFare 1k/4k Cannot emulate at this time

Type 4 (DESFire) 4000 15 bytes of Capacity Container

ISO 14443 A-4 (PDU) Nothing interesting to fuzz

Type 1 (Topaz) Cannot emulate at this time

Type 3 (FelCa) Cannot emulate at this time

LLCP - Connect 2000 19 bytes of information

LLCP - I 2000 13 bytes of header information

Application Layer
A total of 34852 test cases were performed against the Nokia N9. See below for details.

Charlie Miller: Exploring the NFC Attack Surface

Device Type Test
cases

Results/notes

Nokia N9 NDEF - bitflip 9000 Mutation-based

NDEF - short text 1626 Generation-based

NDEF - short URI 538 Generation-based

NDEF - short SMS 1265 Generation-based

NDEF - short SP 3675 Generation-based

NDEF - short BT 1246 Generation-based

NDEF - long text 2440 Generation-based

NDEF - long vcard 15062 Generation-based

Crashes
No crashes were detected. Nokia N9 stack FTW, or more likely, my method is flawed in
some manner.

NFC higher level code
So far we have considered the NFC stack responsible for communicating and obtaining
NDEF messages from the outside world. Clearly, this is an important part of the attack
surface, but it is really just the first piece of the puzzle. What remains to be seen is
what the mobile device does with the NDEF data when it receives it. This section
answers that question and sees what other components of the device are related to
NFC and can be activated and used without user interaction.

Nexus S - Android 2.3.3
The first device we reviewed was a Nexus S running Android 2.3.3. As of now, there is
no supported way to update a Nexus S with AT&T baseband to Android 4. This device’s
support of NFC is pretty basic. Out of the box, NFC is enabled but doesn’t do a whole
lot. The device will process NFC data presented to it anytime the screen is on (even if
the device is locked).

Charlie Miller: Exploring the NFC Attack Surface

NFC intents are handled by the Tags application, see Figure 11, below.

Figure 11: Tags processing an NFC Smart Poster

This Java application just displays the contents but takes no real action. If you tap on
the URL, it will open up the application indicated (in this case Browser) with the included
data, in this case a URL. By default, the Tags application handles NFC data, but other
applications can register for that intent as well. When this happens, depending on the
configuration of the app, the new app either handles the NFC data instead of Tags or
allows the user to choose which app to handle NFC data, as in Figure 12, below.

Charlie Miller: Exploring the NFC Attack Surface

Figure 12: The user may choose which app to handle the NFC tag

The Tags application can display data from the following categories defined in src/com/
android/apps/tag/message/NdefMessageParser.java in the Android source code:

• Text
• SMS
• Smart Poster
• Phone call
• Vtag
• URL
• Image

In general, outside of the NFC stack, there is not much on the attack surface of this
Android phone. Large portions of the NFC code are written in Java, only a small
amount of the codebase is actually native code.

Galaxy Nexus - Android 4.0.1
The Galaxy Nexus is an Android phone running Ice Cream Sandwich. It still has some
of the same features as the Nexus S, but ICS introduced Android Beam, which greatly
increases the attack surface visible through NFC. Out of the box, the device has NFC
enabled. It will process NFC data any time the screen is on and the device is unlocked.

Charlie Miller: Exploring the NFC Attack Surface

For some types of NDEF data, it is exactly the same as the the Nexus S running
Gingerbread, using com.android.nfc to hand data off to com.google.android.tag to
display to the user. These types of data include:

• Text
• SMS
• Phone
• Image

However, some types of data that used to be handled by Tags are now handled by
Android Beam.

Android Beam is a way for two NFC-enabled Android devices to quickly share data such
as contacts, web pages, You Tube videos, directions, and apps, see [20]. One can
determine which apps are enabled with Android Beam by searching the
AndroidManifest.xml files to see which apps handle NFC intents.

For example, looking at the Android Browser, we see:

<!-- Accept inbound NFC URLs at a low priority -->
 <intent-filter android:priority="-101">
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" />
 <data android:scheme="https" />
 </intent-filter>

The only apps that register for these types of intents are Browser, Contacts, and Tags.

When two devices are placed close to each other, if one of them is currently showing
something that is “beamable”, the device will prompt the user if they want to send it, as
seen in Figure 13, below.

Charlie Miller: Exploring the NFC Attack Surface

Figure 13: Android asking a user to share the app they’re using, in this case Crime City

If the user chooses to beam it, the devices establish an LLCP connection and a simple
NDEF message is passed from the device beaming to the other device. The data is
sent via Simple NDEF Exchange Protocol (SNEP) with a fallback to NDEF Push
Protocol (NPP), see [17,18,21].

In the end, however, the device does not act any differently whether a particular NDEF
message is received via LLCP/NPP or simply read from a tag. In other words, the
magic of Android Beam has nothing to do with establishing NFC connections between
devices but rather relies entirely on how the device is configured to handle different
NDEF messages when they arrive. What this means is that now instead of vtags and
smart posters being processed by the Tags application, this data is now directly passed
to the Contacts or Browser applications.

Just to reiterate, this means that on ICS devices, if an attacker can get the device to
process an NFC tag, they can get it to visit a web site of their choosing in the Browser
with no user interaction. Obviously, the Browser represents an extremely large attack
surface, and in ICS, that attack surface is now available through NFC!

The Android Browser will parse at least the following formats, if not more:

Type File format

Web related html

css

js

xml

Charlie Miller: Exploring the NFC Attack Surface

Type File format

Image bmp

gif

ico

jpg

wbmp

svg

png

Audio mp3

aac

amr

ogg

wav

Video mp4

3pg

Font ttf

eot

The way that Android beam works for the other advertised services is simply through
URL handlers. In Android you can bring up Google Play (aka Android MarketPlace), the
Maps application, YouTube, etc. through special URLs passed to the browser. In other
words, instead of the attack surface looking like Figure 1, it really looks like Figure 14,
below.

Charlie Miller: Exploring the NFC Attack Surface

Figure 14: Actual NFC attack surface if NFC can communicate with the browser

Galaxy Nexus - Android 4.1.1
We briefly looked at a Galaxy Nexus running Jelly Bean. It is mostly the same as an
ICS device. There are two small changes. One is that it supports NFC simple
Bluetooth pairing, like the Nokia N9. However, it always prompts before allowing
Bluetooth pairing over NFC. Figure 15 shows an example of the prompt.

Charlie Miller: Exploring the NFC Attack Surface

Figure 15: Android displays a prompt before establishing a Bluetooth Pairing via NFC

The other way Jelly Bean NFC differs is in regards to Android Beam. A few more
applications are configured to accept NFC intents. The list is below.

• BrowserGoogle
• Contacts
• Gmail
• GoogleEarth
• Maps
• Phonesky
• TagGoogle
• YouTube

Otherwise, the Jelly Bean build performs identically as an ICS build with regards to
NFC.

Nokia N9 - MeeGo 1.2 Harmattan PR1.3
The Nokia N9 is a phone running the MeeGo operating system. Out of the box it does
not have NFC enabled. Once enabled, It will process NFC data anytime the screen is
on. If the device is locked, it will process low level NFC data, but handles high level
data differently. None of the attacks outlined later work if the N9 has the screen locked.

Charlie Miller: Exploring the NFC Attack Surface

Typically, when an NFC message is read, a process called conndlgs (Connectivity
Dialogues) displays it to the screen, see Figure 16, below.

Figure 16: conndlgs and its simple interface

The conndlgs process will display options to “view” or “send” which will open up the
appropriate corresponding application or cancel. For example, hitting view for text
NDEFs opens up the notes application while hitting view for smart poster NDEFs opens
up the web browser, called QTWebProcess.

One exception to this rule is Bluetooth pairing. When the device receives an NDEF
Pairing request, it automatically attempts to pair to the requesting device. Depending
on user settings, this may or may not require user interaction, see Figure 17, below. By
default, pairing does not require user interaction. Furthermore, if Bluetooth is disabled,
when an NDEF Pairing request arrives, the device will enable Bluetooth for the user.

Charlie Miller: Exploring the NFC Attack Surface

Figure 17: If the “Confirm sharing and connecting option” is enabled, it forces a prompt
before Bluetooth sharing is performed

Nokia N9’s also have a similar mechanism to Android’s Beam called Content Sharing. It
is possible for one N9 to share data with another N9 over NFC (for small payloads) or
over Bluetooth automatically set up via NFC. Using this mechanism one can force a
Nokia N9 to display images in Gallery, contacts in Contacts, videos in Videos, and
documents such as .txt, .doc, .xls, .pdf, and so forth in Documents. It does not seem to
be possible to force it to open the browser but just about everything else is possible. It
does not require user interaction, even if the setting “Confirm sharing and connecting” is
set to on. The thought of forcing the device to parse arbitrary PDF and MS Office
formats is almost as frightening as having it open up web pages!

One interesting thing is it doesn’t seem to be possible by default to share audio files via
the Music app. However, if you want to, you can share audio files by sharing them
through the Videos app. Just set a breakpoint at open64 in the obex-client process, call
print strcpy($r0, "/home/user/MyDocs/Movies/mv.mp3")
hit continue and the audio file will be shared.

The following is a list of the file formats which can be shared though content sharing.

Charlie Miller: Exploring the NFC Attack Surface

App File type Library used (if known)

Contacts vCard

Gallery png libpng 1.2.42 - Jan 2010

jpg libjpg 6n - 1998

gif libgif 4.1.6 - 2007

bmp

tiff libtiff 3.9.4 - Jul 2010

Videos (video-suite) mp4

wmv

3gp

mp3

aac

flac

wma

amr

wav

ogg

Documents (office-suite) pdf poppler 16.6 - May 2011

txt

doc(x) docximport.so - KDE 4.74 - Dec 2011

xls(x) xlsximport.so - KDE 4.74

ppt(x) powerpointimport.so - KDE 4.74

Charlie Miller: Exploring the NFC Attack Surface

Figure 18: Actual Nokia N9 attack surface

Possible attacks
Looking at the above discussion, there are a few avenues of attack. We’ll discuss a few
in detail. In each of them we assume an attacker can get close enough to an active
phone to cause an NFC transaction to occur. We also assume that the screen is on
and, when necessary, the device is not locked. This might be getting very close to
someone using their phone, putting a device next to a legitimate NFC payment terminal,
or using some kind of antenna setup to do it across the room, see [22].

From [23], active reads have been made of NFC from a distance of up to 1.5 meters.

Android NFC Stack bug
If one were to exploit one of the NFC stack bugs shown earlier in Android, you could
imagine exploiting it and getting control of the NFC Service. This isn’t necessarily the
best process for an attacker to control. If you look at the AndroidManfiest.xml file for
com.android.nfc, you see it does not contain Internet permissions. It will be difficult for
an attacker to exfiltrate data over the Internet without this permission, although it is
possible, see [24]. However, the NFC Service does have BLUETOOTH and
BLUETOOTH_ADMIN, so it is probably possible to establish a Bluetooth connection

Charlie Miller: Exploring the NFC Attack Surface

with the attacker. As we’ll see for the N9 below, if an attacker can bluetooth pair with
the device, it is possible to take complete control of the device.

Android Browser
Since an attacker can force an active device to display an arbitrary web page, armed
with an Android browser exploit, an attacker can compromise an active device with an
NFC tag. In this case, the attacker will be running code in the browser itself and not in
the NFC service.

N9 Bluetooth pairing
If the N9 has NFC enabled and does not have “Confirm sharing and connecting”
enabled (see Figure 17), if you present it a Bluetooth Pairing message, it will
automatically pair with the device in the message without user confirmation, even if
Bluetooth is disabled.

An example of such an NDEF message is

 [0000] d4 0c 27 6e 6f 6b 69 61 2e 63 6f 6d 3a 62 74 01 ..'nokia.com:bt.
 [0010] 00 1d 4f 92 90 e2 20 04 18 31 32 33 34 00 00 00 ..O... ..1234...
 [0020] 00 00 00 00 00 00 00 00 00 0c 54 65 73 74 20 6d Test m
 [0030] 61 63 62 6f 6f 6b acbook

In this message, a PIN is given as “1234”, a Bluetooth address, and a name of the
device are also provided. Once paired, it is possible to use tools such as obexfs,
gsmsendsms, or xgnokii to perform actions with the device. Basically, if a user just
enables NFC and makes no other changes to the device, it can be completely controlled
by an attacker if the attacker can get it read an NFC tag.

On the other hand, If you have “Confirm sharing and connecting” enabled, a prompt
appears that looks like that seen in Figure 19, below.

Charlie Miller: Exploring the NFC Attack Surface

Figure 19: The prompt raised if notification is required

A similar attack against a Nokia 6212 was outlined in [25] except the authors didn’t
know how to make the device complete the pairing process and so tried additional ways
to try to activate the Bluetooth. Also, due to the fact they never succeeded in pairing,
they uploaded an app instead of trying to control the device. Finally, on the 6212, by
default, the device prompted before pairing where by default the N9 does not.

N9 bugs
If the victim has the Confirm sharing and connecting feature enabled, then the attacker
will have to resort to Content Sharing as an attack vector. Recall that without user
interaction, it is possible to force the Nokia N9 to parse and display a variety of file
formats, oftentimes in outdated libraries.

If one were to try to use PNG files, for example, the version of PNG shipped on the
latest N9 firmwares is 1.2.42. There are at least two critical vulnerabilities that have
been found and patched since that release, as shown in [26].

If one wanted to find their own vulnerabilities, they would just have to spend some time
fuzzing. To demonstrate this, we briefly fuzzed the Documents application on the Nokia
N9. Here are a couple of interesting crashes that we found, as seen in valgrind.

Charlie Miller: Exploring the NFC Attack Surface

First a crash for PPT rendering,

==3572== Thread 2:
==3572== Invalid free() / delete / delete[] / realloc()
==3572== at 0x48347B4: free (vg_replace_malloc.c:366)
==3572== by 0x5DE780F: free_mem (in /lib/libc-2.10.1.so)
==3572== by 0x5DE71F7: __libc_freeres (in /lib/libc-2.10.1.so)
==3572== by 0x48285B7: _vgnU_freeres (vg_preloaded.c:61)
==3572== by 0x5DB5AC3: __libc_enable_asynccancel (libc-cancellation.c:66)
==3572== by 0x6826CAF: ??? (in /lib/libglib-2.0.so.0.2800.4)
==3572== Address 0x7491f30 is not stack'd, malloc'd or (recently) free'd

Here is one for PDF rendering.

==4002== Invalid write of size 1
==4002== at 0x7290FB4: SplashXPathScanner::clipAALine(SplashBitmap*, int*,
int*, int) (in /usr/lib/libpoppler.so.13.0.0)
==4002== Address 0xf8dc5090 is not stack'd, malloc'd or (recently) free'd

Finally, here is one in DOC rendering. (Note, this is a 0-day not only for Nokia N9 via
NFC, but also for Koffice, which utilizes the same libraries). The following excerpt
comes from the file koffice-2.3.3/filters/kword/msword-odf/wv2/src/styles.cpp.

bool STD::read(U16 baseSize, U16 totalSize, OLEStreamReader* stream, bool
preservePos)
...
 grupxLen = totalSize - (stream->tell() - startOffset);
 grupx = new U8[grupxLen];
 int offset = 0;
 for (U8 i = 0; i < cupx; ++i) {
 U16 cbUPX = stream->readU16(); // size of the next UPX
 stream->seek(-2, G_SEEK_CUR); // rewind the "lookahead"
 cbUPX += 2; // ...and correct the size

 for (U16 j = 0; j < cbUPX; ++j) {
 grupx[offset + j] = stream->readU8(); // read the whole UPX
 }
...

In this function, it allocates a buffer for the array grupx based on a parameter passed to
this function. It then fills in this array based on an unsigned short read in directly from
the file, stored in the variable cbUPX. In this case, the length of a copy and the data
being copied is read directly from the supplied file, which leads to an ideal heap
overflow. Depending on the way memory is manipulated, it is possible to get control of
the process using this vulnerability. Below demonstrates one such trial.

Program received signal SIGSEGV, Segmentation fault.
0x18ebffaa in ?? ()
(gdb) bt
#0 0x18ebffaa in ?? ()
#1 0x41f61f64 in wvWare::Parser::~Parser() () from /usr/lib/libkowv2.so.9
#2 0x41f6537c in ?? () from /usr/lib/libkowv2.so.9
#3 0x41f6537c in ?? () from /usr/lib/libkowv2.so.9
(gdb) x/2i 0x41f61f5c

Charlie Miller: Exploring the NFC Attack Surface

 0x41f61f5c <_ZN6wvWare6ParserD2Ev+232>: ldr r12, [r3, #4]
 0x41f61f60 <_ZN6wvWare6ParserD2Ev+236>: blx r12
(gdb) print /x $r3
$3 = 0x41414141

In this case, a value read from the file is used as a pointer. This data where this pointer
points is then read and used as a function pointer. With minimal work, this would lead
to control of program flow and ultimately code execution.

Summary
Any time a new way for data to enter a device is added, it opens up the possibility of
remote exploitation by an attacker. In the case of NFC, a user would typically think that
the new data would be limited to just a few bytes embedded in an NFC tag. This
document shows that the new attack surface introduced by NFC is actually quite large.
The code responsible for parsing NFC transmissions begins in kernel drivers, proceeds
through services meant to handle NFC data, and eventually ends at applications which
act on that data. We provide techniques and tools to carry out fuzzing of the low level
protocol stacks associated with NFC.

At a higher level, for both the Android and MeeGo device we examined, it is possible
through the NFC interface to make the device, without user interaction, parse web
pages, image files, office documents, videos, etc which most users of NFC would
probably be surprised to learn.

NFC offers convenience to share files and games as well as make mobile payments.
However, since anytime an attacker is in close proximity to a victim, she can force the
victim’s device to parse one of over 20 different formats without user interaction, it has
to raise security concerns.

Charlie Miller: Exploring the NFC Attack Surface

Acknowledgements
This was a long project, mostly out of my comfort zone. I’m sure I’m forgetting some
people but here is a list of folks I’d like to thank for their help in no particular order.

Accuvant: Gave me a paycheck while letting me do this work
Cyber Fast Track: Partially funded all this work
Josh Drake: Android exploitation help
Crowdstrike (especially Georg Wicherski) For sharing and walking me through their
Android browser exploit
Michael Ossmann: GNU Radio help
Travis Goodspeed: Help with N9 basics
Kevin Finisterre: Bluetooth help
Corey Benninger and Max Sobell: GNU Radio and basic NFC stuffs
Collin Mulliner: For trying to help me do NFC memory injection, although I never used it
Adam Laurie: For convincing me that you could do card emulation successfully
Jon Larimer: For pointing out one of my crashes corresponded to the double free they
fixed in 4.0.1
Shawn Moyer: For proofreading this doc!

Charlie Miller: Exploring the NFC Attack Surface

References
[1] ISO 14443 Part 2: Radio frequency power and signal interface http://www.nfc-
forum.org/specs/
[2] NFC and GNU Radio, part 1, Miller, https://www.openrce.org/repositories/users/
camill8/nfc-usrp.pdf
[3] NFC and GNU Radio, part 2, Miller, https://www.openrce.org/repositories/users/
camill8/nfc-usrp-2.pdf
[4] ISO 14443 Part 3: Initialization and anticollision http://www.waazaa.org/download/
fcd-14443-3.pdf
[5] Type 1 Tag Operation Specification http://www.nfc-forum.org/specs/
[6] Interview: Karsten Nohl http://www.thetechherald.com/articles/Interview-Karsten-
Nohl-Mifare-Classic-researcher-speaks-up/6954/
[7] Type 2 Tag Operation Specification http://www.nfc-forum.org/specs/
[8] Type 3 Tag Operation Specification http://www.nfc-forum.org/specs/
[9] Type 4 Tag Operation Specification http://www.nfc-forum.org/specs/
[10] Logical Link Control Protocol NFCForum-TS-LLCP_1.1http://www.nfc-forum.org/
specs/
[11] NFC Data Exchange Format (NDEF) http://www.nfc-forum.org/specs/
[12] NFC Record Type Definition (RTD) http://www.nfc-forum.org/specs/
[13] Text Record Type Definition http://www.nfc-forum.org/specs/
[14] proxmark3 http://proxmark3.com/
[15] NFC Digital Protocol ftp://ftp.heanet.ie/disk1/sourceforge/n/project/nf/nfsresearch/
Open%20NFC/custom_layout12.pdf
[16] Fuzzing the Phone in your Phone http://www.blackhat.com/presentations/bh-
usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
[17] Android NPP push protocol http://source.android.com/compatibility/ndef-push-
protocol.pdf
[18] Simple NDEF Exchange Protocol Technical Specification
[19] Platform Versions http://developer.android.com/resources/dashboard/platform-
versions.html
[20] Discover Android http://www.android.com/about/
[21] SNEP protocol and P2P response http://www.libnfc.org/community/topic/559/
android-nfc-snep-protocol-and-p2p-response/
[22] http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-2012-
rlifchitz-contactless-payments-insecurity.pdf
[23] Long range NFC Detection, http://www.youtube.com/watch?v=Wwy8ButHbcU
[24] Zero-Permission Android Applications http://leviathansecurity.com/blog/archives/17-
Zero-Permission-Android-Applications.html
[25] Practical attacks on NFC enabled cell phones, Verdult and Kooman, http://
www.cs.ru.nl/~rverdult/Practical_attacks_on_NFC_enabled_cell_phones-NFC11.pdf
[26] http://www.libpng.org/pub/png/libpng.html

Other useful references:
Securing Near Field Communications, Kortvedt, http://ntnu.diva-portal.org/smash/get/
diva2:347744/FULLTEXT01

Charlie Miller: Exploring the NFC Attack Surface

http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
https://www.openrce.org/repositories/users/camill8/nfc-usrp.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp-2.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp-2.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp-2.pdf
https://www.openrce.org/repositories/users/camill8/nfc-usrp-2.pdf
http://www.waazaa.org/download/fcd-14443-3.pdf
http://www.waazaa.org/download/fcd-14443-3.pdf
http://www.waazaa.org/download/fcd-14443-3.pdf
http://www.waazaa.org/download/fcd-14443-3.pdf
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.thetechherald.com/articles/Interview-Karsten-Nohl-Mifare-Classic-researcher-speaks-up/6954/
http://www.thetechherald.com/articles/Interview-Karsten-Nohl-Mifare-Classic-researcher-speaks-up/6954/
http://www.thetechherald.com/articles/Interview-Karsten-Nohl-Mifare-Classic-researcher-speaks-up/6954/
http://www.thetechherald.com/articles/Interview-Karsten-Nohl-Mifare-Classic-researcher-speaks-up/6954/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://www.nfc-forum.org/specs/
http://proxmark3.com
http://proxmark3.com
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://source.android.com/compatibility/ndef-push-protocol.pdf
http://source.android.com/compatibility/ndef-push-protocol.pdf
http://source.android.com/compatibility/ndef-push-protocol.pdf
http://source.android.com/compatibility/ndef-push-protocol.pdf
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.android.com/about/
http://www.android.com/about/
http://www.libnfc.org/community/topic/559/android-nfc-snep-protocol-and-p2p-response/
http://www.libnfc.org/community/topic/559/android-nfc-snep-protocol-and-p2p-response/
http://www.libnfc.org/community/topic/559/android-nfc-snep-protocol-and-p2p-response/
http://www.libnfc.org/community/topic/559/android-nfc-snep-protocol-and-p2p-response/
http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-2012-rlifchitz-contactless-payments-insecurity.pdf
http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-2012-rlifchitz-contactless-payments-insecurity.pdf
http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-2012-rlifchitz-contactless-payments-insecurity.pdf
http://2012.hackitoergosum.org/blog/wp-content/uploads/2012/04/HES-2012-rlifchitz-contactless-payments-insecurity.pdf
http://www.youtube.com/watch?v=Wwy8ButHbcU
http://www.youtube.com/watch?v=Wwy8ButHbcU
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://www.cs.ru.nl/~rverdult/Practical_attacks_on_NFC_enabled_cell_phones-NFC11.pdf
http://www.cs.ru.nl/~rverdult/Practical_attacks_on_NFC_enabled_cell_phones-NFC11.pdf
http://www.cs.ru.nl/~rverdult/Practical_attacks_on_NFC_enabled_cell_phones-NFC11.pdf
http://www.cs.ru.nl/~rverdult/Practical_attacks_on_NFC_enabled_cell_phones-NFC11.pdf
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://ntnu.diva-portal.org/smash/get/diva2:347744/FULLTEXT01
http://ntnu.diva-portal.org/smash/get/diva2:347744/FULLTEXT01
http://ntnu.diva-portal.org/smash/get/diva2:347744/FULLTEXT01
http://ntnu.diva-portal.org/smash/get/diva2:347744/FULLTEXT01

ISO 14443 Library Reference Guide http://www.ti.com/rfid/docs/manuals/refmanuals/
RF-MGR-MNMN-14443-refGuide.pdf
Near Field Communication http://en.wikipedia.org/wiki/Near_field_communication
NDEF Push / Android Beam / NFC Tags Demo Applet http://grundid.de/nfc/

Charlie Miller: Exploring the NFC Attack Surface

http://www.ti.com/rfid/docs/manuals/refmanuals/RF-MGR-MNMN-14443-refGuide.pdf
http://www.ti.com/rfid/docs/manuals/refmanuals/RF-MGR-MNMN-14443-refGuide.pdf
http://www.ti.com/rfid/docs/manuals/refmanuals/RF-MGR-MNMN-14443-refGuide.pdf
http://www.ti.com/rfid/docs/manuals/refmanuals/RF-MGR-MNMN-14443-refGuide.pdf
http://en.wikipedia.org/wiki/Near_field_communication
http://en.wikipedia.org/wiki/Near_field_communication
http://grundid.de/nfc/
http://grundid.de/nfc/

